大话SCI写稿技巧

2011-12-08 16:18 来源:丁香园 作者:guodanni
字体大小
- | +

你认为你是谁呀?还想投SCI?!中过彩票吗?投SCI就象中彩票."

也许有一天,你豪气冲天地对你导师说你要投SCI,你原来认为你导师会大大地表扬你一番,结果那个奋斗了一辈子的老头狠狠地讽刺了你一番。那个老头一辈子没有投过,现在一听SCI,就发火。

你受到打击后,也偃旗息鼓了。

真的很遗憾,也许这是多么好的DATA,就这样随便投了一家中文杂志,就像本来很好的盖大楼的材料,现在盖厕所了。

兄弟,我来支持你,支持中国本土产的杰出的年轻科学工作者,我和你交流,一起来探讨如何突破SCI。

投SCI其实不象中彩票,象什么?象结婚。

谁都会结婚,除非真的找不到另一本,而彩票不是每个人都能中的!

所以,你我都会中SCI!

本系列主要解除你对SCI的神秘感,顺便介绍一些经验和教训。呵呵,明天我要嫁人了。

投SCI最大的问题是什么?

不是语言,如果是语言的话,那就干脆找翻译公司,不就是出点钱吗?不过特别善意地提醒你,随便找一家翻译公司还不如不找,因为他们的活干的实在是不敢恭维,简直就是英语专业大一大二年级的人在混钱。所以呀,找一个靠谱的是很关键的,至少不能让钱化的心痛。

坦率地说,许多人面对的就是如何组织DATA?手中一大堆DATA,如何选取?

或者说,想投什么样的期刊?IF>10敢吗?

这其实是一个问题,针对性,你要针对你选取的期刊进行DATA的组织。你手中有很漂亮的免疫荧光照片、有RT-PCR的电泳结果、有Wesern-blot的阳性结果,还有流式细胞仪等等的结果,第一次发SCI,你恨不得把全部结果都堆上,你想借此来体现你文章的价值,从而能够被接受,被发表,完成你的处女SCI。

这就像你恋上了一位漂亮的女孩,你想把所有的一切都给她,你买花,你也买金银首饰,她要什么,你都想给她,但是你要搞清楚,你的目的主要是赢得她的心,获得她的心其实并不需要太多的东西,有时候可能就是一句话:“我爱你。”就这样简单。

第一篇SCI其实也是这样,非常简单,选取针对某一个问题的相关DATA,最重要的是这些DATA和你目的的相关性,然后在你的DATA间建立有机的联系,要大刀阔斧地取舍,任何DATA都是一样的,千万不要因为某个结果你觉得费了很大气力才作出来,你就千方百计地堆砌上去,这往往是初投SCI的大忌。有的人一直在写,总感觉到写不完,往往也是因为这个原因,总想把一些相关性不大的东西搞进文章中,那自然永远觉得写不完。

我们这里强调两个词,相关和有机联系,这是准备材料很重要的两个方面。

你的选题和你要选取的期刊有相关性吗?这种相关就决定了你论述相关问题的针对性。你选取的材料之间具有相关性吗?是怎样的相互联系呢?

我们从pubweb上随便拉来一篇文章进行分析吧。

TRPC4 IN RAT DORSAL ROOT GANGLION NEURONS IS INCREASED AFTER NERVE

INJURY AND IS NECESSARY FOR NEURITE OUTGROWTH

这篇文章发表在2007年10月10号的JBC上,从题目中我们就可以感觉到文章主要介绍TRPC4这种目前比较为人关注的蛋白在神经损伤后突触生长中的作用。

文章呈现为组织材料的递进和有序, 先论证TRPC的存在, 接着是TRPC4的表达,特别是在亚细胞部位的表达,神经损伤后的转录和表达水平的变化, 接着探讨表达抑制和过表达对神经生长的影响, 有可以删去的部分吗?没有,根本没有拖泥带水,TRPC4在文献报道中是经常和TRPC1亚基组成共聚体,是不是TRPC4在这里同样也是这样起作用的呢?我们相信作者手头肯定有这样的工作,但文章就是没有这样的东西出现。

这很给我们以启示。

所以这就是你在投SCI的时候我给你的第一个忠告,聚焦。

但是,一些人研读了那篇文章后很自然的说,是不是投SCI时DATA的组织必须按照这种层层剥开的方式娓娓道来呢?

其实不是这样的,高水平SCI文章通常呈现为这样的格式,为了论证自己新发现的正确,作者从不同的方面分为几个层次进行论证,我们在阅读文献的时候也因为大量接触到这样的文献,因而也使我们在投稿时有畏难情绪,其实事实上不是这样的。

就如我们穿衣服,有钱的人穿绫罗绸缎,没钱的人裹块布就是衣服,据说裙子就是这样发明的。高IF的期刊自然是要求尽善尽美,否则就不是高IF了;但低IF期刊就不是这样的,他通常呈现为百花齐放的格式,如果这个百花齐放吓倒了你,我干脆用乱七八糟的格式就行了。

比如平行的材料组织格式,这种格式在低IF期刊的文章中可以说比比皆是,其更容易书写,而且也是大多数人的思维可以达到的水平。通常其组织方式是有个核心支架,支架上面出现几个并列的部分,每个部分常见的title为Effect of...on...,呵呵,你第一反应肯定说我现在也在构建这样的格式,对了,这也是我向第一次投SCI的你优先推荐的格式。

我们举一篇文章来分析这种格式:

Gene silencing of TKTL1 by RNAi inhibits cell proliferation

in human hepatoma cells

这篇文章发表在Cancer Letters 253 (2007) 108–114,是一个DATA按照平行结构组织的典型文献,也是我们中国人写的。

DATA组织中首先检验了transketolase家族在肝细胞瘤细胞中的表达,然后逐一检测siRNA TKTL1对transketolase活性、肝瘤细胞系细胞分裂周期和瘤细胞增值的影响,最后结论和展望就一句话These results indicate that TKTL1

gene influences total transketolase activity and cell proliferation in human hepatoma cells, suggesting that TKTL1 gene plays an important role on glycometabolism in tumors and it might become a novel target for tumor gene therapy.你看不是也在SCI发表了吗?

DATA平行的关键在于有一个共性的东西在里面,说的直白一点,就象放风筝,你手里的线是很重要的,这篇文章的共性东西就是siRNA TKTL1,然后检验其在不同方面对肝瘤细胞的影响,其实作者还可以作一些这种指标,也可以放进去,这是和递进式DATA组织方式的根本区别。

好了,你该明白我的意思了,想发表SCI文章,首先要有效地获得和组织你的DATA,而逻辑上的递进式和平行式是两种常见的方式,开始投SCI文章时,我们推荐你更多地采用平行式的结构,当你成为高手,游刃有余之际,这个就根本不是问题了,你可能更多地混合两种DATA组织方式,或许你该有新的发现和突破了。

那么解决了DATA的组织问题,我们就能很好地有的放矢地进行安排,进行试验,准备着收获初投SCI成功的喜悦。

接下来的问题自然是如何选择与我们组织的材料有亲和力的SCI期刊呢?这真是一个棘手的问题,不过你听我慢慢与你细说端详。

书接上回,我们说到接下来该解析如何投稿了,这就像螺丝和螺母的关系,你最关心的是给自己的螺丝找一个合适的螺母“拧”进去,螺母大或小对于你都是不合适的,而即使大小合适,还需要螺纹的咬合。

如何判断这种大小和咬合?

这可能是一个非常专业的问题,而且还需要一定的经验,但这不意味着就没有可追寻的“道道”。

我们首先从期刊的IF谈起。

期刊的IF意味着被引用的频数,也正因为这种频数,决定了这种期刊发表文章在生命科领域的广度、深度和认可度,为了精确的对此进行把握,我们必须对本领域的期刊有非常深入的了解,至少你必须根据期刊的IF将此分为几个等级,分等级前你必须体现出层次。

比如神经生物学有关期刊你可以这样分类(仅供举例,不做参考):

第一等级:Nature science cell

第二等级:上述刊物下属期刊,如nature neuronsic等

第三等级: neuron PNAS等

第四等级: J neurosci等

第五等级:Brain res bullten等

等级分好后,你主要集中于你文章适合的等级进行期刊的特性研究,然后调整自己文章的书写模式和格式。

为了更精确地匹配你的投稿文章,我们建立了“四模块评价体系”,简而言之,就是将你的文章分为以下四个module.

思想模块

组织模块

技术模块

创新模块

每个模块有其独特的内容,对每个模块进行分析和研究,如果你这样做了,你甚至可能重新完善你的文章、补充你的内容,最后可能在投稿上提高一个等级。

为了使大家确切地知道这些模块的内容,我们通过分析一篇文章的内容来进行讲解。

首先来讲讲思想模块,这是你SCI论文建立的基础。这就是你为什么来写这篇论文,怎样写的关键。模块模块,还是绘成模块图来说比较好。

从这个模块图来看,所谓思想模块就是你能写成SCI的基础。其实这也是你搭起论文框架的“东东”。

首先你从文献上了解到你关注到领域的进展,从这些进展中,你找到你关注的问题,提出可能结论,通过至少三个最好是四个相互独立的实验进行论证,然后对这些结果进行分析和论证,最后得出结论。

这里指出的是,在你思想模块中的实验部分,高IF通常要求四个彼此不存在联系但同时又能够相互论证结果的实验(号称“相互独立,彼此联系”),但一个或两个可以发表到低一点的SCI期刊上。

在思想模块中,最重要的是你的分析和推理,体现在SCI文章中的就是讨论的水平,讨论是干什么的?

讨论就是突出你文章结果的意义,可能影响,你要告诉别人你的结论,这个结论如何体现在你的实验结果中。

为了体现你的思想,通常需要按照重要程度对讨论进行排列,有时甚至为了这种顺序,你需要重新编排你的实验结果展示顺序。但是有时候我们的几个独立实验可能对结论呈现为强弱不等的支持,那么遇到这种情况,特别是弱支持点,需要寻找根据进行强化,比如文献支持、以前实验证明等等,无论在何种情况下,对得出的支持点都要非常谨慎地表达,特别要把握度,不能吹,或者象马季相声中说得“火箭从我脚下过”那样,那就不靠谱了,但你可以说,2米40的个子使我在一般人群中显得特别高大,我有点象生活在另一个星球的感觉。怎么样?比刚才的话语要更250,但人们的感觉却要好很多。这就是你用“we think”和“the results showed"的区别。

一个好的实验结果要发表在理想的SCI期刊上,一定要有好的组织。这种组织是一种堪比做出漂亮实验的能力。

接下来我们谈谈组织模块。

而技术模块就是你用什么方法来证明你的结果的,主要体现在材料和方法一节中,但要做到方法被承认,有说服力。不能象克林顿承认有oral sexual 行为,但否认有ML行为,由于在法律上性行为确实是有争议的定义,比如中国法律对强奸行为的定义就是性器官的接触,但一些国家却是插入说,因此克林顿就利用其律师的性格特征辩护自己没有和老莱有性行为,这在技术模块上称为打檫边球,想在SCI期刊上发表似是而非技术得出的结论通常是非常困难的,有时候一些低IF期刊上可以发表的文章,其技术方法在高IF期刊上可能是不被承认的。

创新模块就是你有什么是别人没有的,包括观点的突破甚至一些非常小的细微差别,比如别人在狗、老鼠、兔子上做了,而你是第一个在人身上证明的,尽管结果一致,但你同样可以发表。

呵呵,好像这四个模块说来说去非常抽象,弯弯绕,怎么说呢?打个比方吧。就如一个美女,思想模块就是这个女孩的思想,组织模块就是她的打扮、穿着,技术模块就是父母的遗传,而创新模块就是女孩内在的气质。

还不明白,我真的只好用论文来举例了。

PDZ是在不同信号蛋白中都存在的结构域,这个名称来自于三个蛋白质的首字母,分别为哺乳动物突触后密度蛋白PSD-95(postsynaptic density protein)、果蝇肿瘤抑制蛋白DLG (disc large tumor suppressor gene)、哺乳动物紧密连接蛋白ZOs,所以也称PDZ域为Dlg类似物区域(DHR, Dlg homologous region),又因最初确证的PDZ域均含Gly-Leu-Gly-Phe序列,也称为GLGF重复序列。这种结构域蛋白在蛋白质复合物组装过程中具有重要作用。近来发现这种结构域的一个重要作用是充当脚手架分子,就象磁铁一样,能够吸引他感兴趣的分子从而将自己“充气”,形成一个巨型的分子,通常分子上结合的蛋白属于“专业”工匠,形成一个小团队,这样说好像有点象盗窃团伙,分工明确,有负责偷车的,转移的、销赃的,呵呵,一条龙,而组织者就如PDZ结构域。当然,这种结合优化了信号传导局部的环境,在信号传导过程中避免由于不必要的大分子结合从而形成的干扰。

现在的发现是这种脚手脚呈现为可变的结构,为了执行信号通路的功能,其分子呈现为动态的变化,可以在氧化状态和还原状态之间互换。而且作者利用蛋白晶体X射线衍射结合膜片钳技术观察到不同状态下分子结构和功能的变化,呵呵,这是发表在2007.07.037cell上的一篇文章,我们用四个模块理论来分析一下这篇文章。

那么这篇文章比较值得注意的是文章所采用的组织模块,这种组织模块在讲述作者新的发现时非常有说服力,我们继续在下一个帖子用模块图来表示。

我记得说新疆人,有这样一句经典,早穿棉袄午穿纱,围着火炉吃西瓜,那是一种如何的逍遥啊。写文章其实也是这样一个大喜大悲的过程,但重点是你如何享受这个过程,而不要看作是煎熬。

不过今天的世界有太多的不如意,老板催、自己急,重要的还是要有SCI。不管如何,我们回到我们的组织板块,老实话,我们对我们论坛上发表的这组文章是有构思的,因此在这儿我们就不会重复文章开始的部分,而回归到文章的introduction、result和discussion部分。

这三个部分的书写也是按照组织板块的要求进行书写的,但又各有特色,让我们用架构来取代板块,用以代表文章各个部分的组织要求。

通常我们发表的论文有三种类型,至少我这样总结。

1. 研究型论文

这是一种求证过程的报道,验证一种假说、证明一种理论为真等等就是这样一种类型的论文。

2. 报道型论文

这是一种事实陈述型论文,用什么鬼药治疗什么鬼疾病,发现药物有效,就是这样,大家都写过。

3. 方法改进型论文

典型的就是萨克曼和内耳写的那篇膜片钳改进的论文。

我们呢,只能选择大家最经常写的研究性论文为例来进行阐述。

写文章就是在编故事,没有什么神秘的。编故事的开始就是要吸引人去听,写文章也是这样,要让人去看,去产生兴趣,不管熟悉不熟悉你研究领域的都有耐心去看、去读,而且要读懂,那么做到这儿,你肯定就是写文章的高手。

前言说穿了,就是引出一个问题,这个问题是你文章的魂,是一个中心。

怎样引出问题,你不能上去就来“你还是处男吗?”

呸,你不是找骂吗?

你要慢慢来,至少有个过渡,人家知道的你要先介绍介绍,你要告诉别人,你要招募处男,处男主要是那些和女性从来没有皮肉接触过的年轻男子,那又怎么样?

但如何鉴别处男是个难题,哦然后再问:“你还是处男吗?”

这就是introduction。

我们可以将前言的架构概括为:“有个小漏斗,漏了一滴油”来概括。

我现在举个例子, 大家知道的是周正龙,其实周正龙拍老虎本身就是一个非常好的introduction。好到什么程度?

他出名了,得利了。

还是,镇坪出名了,得利了。

还有陕西省林业厅也得利了。

非常成功得introduction,成功到science也要来凑热闹,天哪,我们发一篇science多难呀,现在science找到门上来要发周正龙。

这篇“文章”就是遵循漏斗的原理来完成的。

背景:1.华南虎是珍稀动物。

2.华南虎频临灭绝,或者被认为是已经灭绝的动物。

3, 镇坪是华南虎曾经生活过的地方,这个地方曾经是华南虎栖息地。

4. 近年来,专家门一直希望找到华南虎。

5.在镇坪,专家们找到了一些被认为是华南虎的皮毛或者粪便,但化验结果提示属于其他猫科动物的。

焦点:华南虎是否存在的关键是找出其存在的证据,如果镇坪存在这样的证据的话,镇坪就存在华南虎,而这也说明华南虎没有完全灭绝。

问题:在镇坪能找到华南虎的证据吗?

实验过程:通过数码相机拍摄来获取证据。

很不错的introduction。

正因为这个introduction一级棒,所以获得了很多眼球的关注。

至于是拍摄真老虎还是年画,或者是数码合成,这些由于不是introduction的分析内容,不属于本节要谈论的内容,我们就没必要瞎参乎了。

我们接下来再谈谈introduction的特点和具体要注意的事项。

举一个例子下来,我们就非常清楚,原来前言的目的就是描写你实验结果的“新、重要性和关注性”,我们认真想想nature和science有时候登的文章也不是很有什么高科技含量,比如山羊同性也会出现性行为等等,你说么个意思呀,但是他能引起公众的兴趣,大家爱看,就是这样。

所以说基于这样的认识,前言就形成了宽背景、渐聚焦、最后是问题,顺便带一下你怎样进行你的实验,很多句子介绍背景,然后采用合适的逻辑逐渐过渡到未知的方面,聚焦到全文的一个主题句―――一个问题。

举个例子吧。

发表在J Physiol 574.3 (2006) pp 711–729的一篇文章,题目为Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells,这篇文章主要探讨Golgi cells节律放电的机制,该文章的introduction是这样写的:

Inhibitory interneurons are key elements for network computation and learning (Singer, 1993). In the cerebellum, the main inhibitory neurons of the granular layer (GL) are Golgi cells (GoCs; Golgi, 1883). GoCs are activated by mossy and parallel fibres, and are inhibited by molecular layer interneurons (Eccles et al.1967) and by Lugaro cells (Dieudonn?e & Dumoulin, 2000). In turn, GoCs contact granule cells at glomeruli with inhibitory synapses (Eccles et al. 1967), thereby regulating information flow along the mossy fibre pathway. Investigations in vivo revealed that GoCs show spontaneous rhythmic discharge both in awake (cat: 2to ~50 Hz, Edgley & Lidierth, 1987; monkey: 10–80 Hz,Miles et al. 1980) and anaesthetized animals (rat: 2 to ~30 Hz, Schulman & Bloom, 1981; Vos et al. 1999). An interesting observation is that the granular layer of awake animals during states of quiet attentiveness shows a population oscillatory activity at 7–8 Hz (rat;Hartmann & Bower, 1998) or 15–18 Hz (monkey; Pellerin & Lamarre, 1997).This raises the question as to whether GoC rhythmicity is driven by network oscillations or is due to intrinsic pacemaking. Answering this question is critical in view of the role played by neuronal excitability in determining network behaviours (Llin?as, 1988).

The observation of GoC spontaneous discharge in cerebellar slices (~3 Hz, rat, Dieudonn?e, 1998; 5–20 Hz, turtle, Midtgaard, 1992) suggests that GoCs could be autorhythmic. Autorhythmicity usually requires the interplay of at least two voltage-dependent mechanisms, one causing feedforward depolarization, and the other delayed feedback repolarization (Wang & Rinzel, 1999; Hutcheon & Yarom, 2000). In low-frequency (1–10 Hz) pacemaker neurons, subthreshold Na+ currents (INa,sub) are generally found to contribute to pacemaker depolarization (Pennartz et al. 1997;Feigenspan et al. 1998; Bevan & Wilson, 1999; Bennett et al. 2000; Beurrier et al. 2000;Wilson & Callaway, 2000; Taddese & Bean, 2002; Do& Bean, 2003; Jackson et al. 2004 and references therein).A contribution to this depolarization is also given, in some neuronal types, by the hyperpolarization-activated current Ih (Maccaferri & McBain, 1996; Bennett et al.2000; Neuhoff et al. 2002; Funahashi et al. 2003; Chan et al. 2004) and by voltage-dependent Ca2+ currents with low activation threshold (Wilson & Callaway, 2000; Jackson et al. 2004; Pignatelli et al. 2005). Among feedback voltage-dependent mechanisms, a number of slow K+ currents may contribute to interspike repolarization on a time scale compatible with slow pacemaking. Apamin-sensitive Ca2+-dependent K+ currents (Iapa) can regulate firing frequency and precision in several pacemaker neurons (reviewed in Stocker, 2004). Given its slow activation just below action potential (AP) threshold and its lack of inactivation (Brown & Adams, 1980; Brown & Yu, 2000), the M-type K+ current (IM) is also expected to regulate the interspike trajectory. Although IM functional properties in native neurons have been mainly studied in non-pacemaker cells (reviewed in Brown & Yu, 2000), immunocytochemical data suggest that KCNQ2, a member of the KCNQ (Kv7) family, which is thought to generate IM (Wang et al. 1998; Brown & Yu, 2000; Jentsch, 2000; Robbins, 2001), is preferentially expressed in neurons having an important role in the control of local network oscillations in various CNS areas (Cooper et al. 2001).

Various channels potentially relevant to pacemaker activity are suggested to be expressed in cerebellar GoCs. mRNAs coding for the Ih channel subtype hcn2 (mouse; Santoro et al. 2000) and hcn2 protein (rat; Notomi & Shigemoto, 2004) were detected in the GL with a distribution compatible with their presence in GoCs. Transcripts coding for two members of the KCNQ family (KCNQ2 and KCNQ5; Wang et al. 1998; Schroeder et al.2000; Saganich et al. 2001) were found in the rat GL, and selective expression of KCNQ2 protein was shown in putative mouse GoCs (Cooper et al. 2001). Finally, I apa is mediated by channels of the SK family, in particular SK2 and SK3 subtypes (Kohler et al. 1996; Ishii et al. 1997). In rat GoCs, mRNAs encoding the SK3 subtype are particularly abundant (Stocker & Pedarzani, 2000). Overall, these data suggested that Ih, IM and Iapa could be functionally expressed in GoCs and could have a role in the control of spontaneous firing.

By performing loose cell-attached (LCA) and whole-cell (WC) recordings, we demonstrate that GoCs in acute cerebellar slices behave indeed as pacemaker neurons. Pacemaking involves the action of at least two depolarizing currents active in the subthreshold region (INa,sub and Ih) and possibly of an M-like current contributing to the repolarizing feedback. Iapa regulates spike after-hyperpolarization (AHP) and inter-spike interval (ISI) precision. These results bear several consequences for the mechanism of inhibition in the cerebellar circuit, and suggest that GoC pacemaking can be finely regulated by several voltage-dependent channels.

在这个前言中,可以看出,几乎全部是关于本文背景的介绍,属于宽背景的典型。这种背景涵盖了抑制性中间神经元的突触连接,以及由问题引出的更多离子通道参与自动节律性活动的背景介绍。这篇前言的焦点和问题放在第一段的最后,这也提示我们并不是所有的论文都有典型的漏斗式前言,相反,真正的好论文是把这些元素有机地组织在一起,形成一个有序的结构。而这篇前言的最后一段则简要介绍了实验过程。

本文的前言在关于结果的重要性介绍方面是“潜在的”,或者说是“隐含的”,当然也有直接点明的。我们来看下面的例子。

文章的背景之宽让我们有点怀疑开始一段的多余性,但文章很快就回归到铅中毒影响卟啉代谢关键酶的基因,然后对此最新文献进行综述,并在此过程中引出焦点和问题,最后介绍作者解决问题的实验过程,一句话带过。

但是在涉及到文章意义或重要性的方面,其实第一段就是着墨甚多,但我觉得其实如果改为隐含可能更好,因为ALAD在铅中毒中的意义不言甚明。

看了这些前言,对这三个方面的书写就有了概括性的认识,但每个方面的书写都有一个关键的问题要解决,我们来逐一解析之。

第一:宽背景的书写方面存在一个问题,特别是有关背景的较长介绍,如何有效地从不同话题之间实现有效的逻辑过渡?

好像弗洛伊德的理论很能说明这个问题,儿童如何从“恋乳情结”过渡到“恋手情结”,再到“自恋情结”,最后过渡到“他恋情结”。哎,你说你没有这方面的体会了。

那么性生活也许可以和前言背景过渡相媲美,你要先谈话,过渡到拥抱,到敏感部位刺激到最后高潮,每一次过渡都无缝天成,前言背景介绍也需要这样。

我们讲要逻辑性地过渡,这种逻辑性其实是一种行云流水,这种逻辑性不仅保证作者讲述自己完整的实验故事,更要保证读者在一条主线的带领下了解作者的真实的目的,自然过渡到作者的问题。

前言较短,主线还比较好确定,举个例子:

听说工资要涨了,

能吃海鲜鹅掌了,

看见老婆敢嚷了,

小孩能增加营养了,

看见小姐心也痒了,

谁知物价又涨了,

都她娘的白想了。

尽管这里讲述了两层意思,工资可能涨带来的对“幸福”生活的憧憬和现实生活中同时物价也跟着涨及由此带来的失望,描写的活灵活现,但由于比较短,尚比较容易驾驭。但对于那些较长的前言,涉及多层意思,就如我们前文的JP例子,或者是那些需要进行嵌套讲述的确实是非常难以处理。

通常的技巧是分段讲述,每段按照漏斗来一个循环,段落按照对问题的相关和强弱来进行安排。前文JP的例子就是一个典型。

在前言的句子衔接中,为做到平稳,通常也需要了解一些语言技巧,我们通过文章来分析:

Journal of Cell Science 108, 3181-3188 (1995) 文章题目:In vitro differentiation of embryonic stem cells into glial cells and functional neurons

Mouse embryonic stem cells (ES cells) are continuously growing cells derived from the inner cell mass of the 3.5 day blastocysts (Evans and Kaufman, 1981; Martin, 1981). ES cells can be cultured in an undifferentiated state in vitro for extended periods of time. When reintroduced back into mouse blastocysts, they retain the ability to contribute to all cell lineages of the developing mouse, including the germ line (Bradley et al., 1984; Robertson, 1987). It has been shown that ES cells also retain the ability to generate differentiated progeny in vitro (Evans and Kaufman, 1981; Martin, 1981; Doetschman et al., 1985). This implies that ES cells can both generate and respond in vitro to signals that normally regulate murine development. ES cells can form three-dimensional structures described as embryoid bodies, from which they differentiate spontaneously into a large variety of cell types (Robertson, 1987; Smith et al., 1988). Retinoic acid (RA), DMSO and methoxybenzamide are also potent differentiation inducers commonly used to trigger differentiation of ES cells more specifically into endoderm-like and fibroblast-like cells (Robertson, 1987; Smith, 1991). In the past few years, several in vitro models of ES cell differentiation have been described. One of the most well characterized is an in vitro model of hematopoietic differentiation (Schmitt et al., 1991; Wiles and Keller, 1991; Keller et al., 1993). Using this model, cytokine and receptor gene expression involved in hematopoietic differentiation have been studied (Schmitt et al., 1991; Keller et al., 1993). In vitro cardio-muscular differentiation of ES cells was also shown to closely recapitulate the early steps of muscle development in vivo (Wobus et al., 1988). These data have paved the way for a new experimental method to study lineage development and differentiation in vitro.

There has been a growing interest, over the past few years, in the characterization of cell lineages during neuronal differentiation of primary cultures (Raff and Miller, 1983; Price et al., 1991; Davis and Temple, 1994) as well as in the molecular mechanisms involved in cell type determination and differentiation (Anderson and Axel, 1986). An in vitro model that would recapitulate the whole differentiation pathway from uncommitted embryonic cells to functional neurons would be an efficient tool to study neuronal differentiation. Embryonal carcinoma (EC) cells have been shown to differentiate into neuronal cells in vitro (Lang et al., 1989; Imrik and Madarasz, 1991). However, EC cells are developmentally compromised embryonic stem cells that seldom contribute to all differentiated cell types and form tumors in chimaeric mice following their reintroduction into the blastocyst (Robertson and Bradley, 1986). Preliminary evidence that ES cells can differentiate into neuronal-like cells in vitro have previously been reported (Wobus et al., 1988; Lee et al., 1994). However, the ability of ES cells to differentiate into the whole spectrum of functional neurons and glial cells that characterize the CNS is still lacking.

In this report, we provide evidence that ES cells can differentiate into glial cells (astrocytes and oligodendrocytes) as well as into functional neurons (at least GABAergic and possibly cholinergic neurons) in vitro, with well reproducible kinetics. Neuron-glia precursor cells were also identified, providing a unique experimental model to study early steps of neuronal differentiation in vitro. During preparation of this paper, Bain et al. (1995) showed also that ES cells can generate neurons in vitro.

我们可以看出,前两段基本上就是背景部分,而第三段则涉及到焦点和问题。我们来看第一段主要包括两层意思,分别介绍干细胞的分化特性和近几年研究干细胞模型中hematopoietic的cytokine and receptor gene expression,中间的过渡语句为In the past few years, several in vitro models of ES cell differentiation have been described,这就使过度显得非常平滑和自然,为了进一步过渡到下一层意思,作者另起一段,同时在第一段以“These data have paved the way for a new experimental method to study lineage development and differentiation in vitro. ”呈现为一种过渡,同时在第二段以“There has been a growing interest, over the past few years, in the characterization of cell lineages during neuronal differentiation of primary cultures”进行承接,就像使一句话没有说完,中间小小地喝了一口水那样出自天然,非常接近人的实际思想。反复品味第一段,还可以看出“ES cells”这个名词几乎统帅了第一段,因为有这个词语,我们觉得每一句都是玉成,没有一点突兀的感觉。

好了,我们总结一下,保持我们前言小综述叙述的逻辑连续性的通常技巧包括以下三个方面:

1. 过渡句或过渡短语的应用

2. 重复关键词语

3. 应用主题句,当然,主题句不一定位于段落的开头。

接下来我们来看一下涉及到不同内容进行嵌套的前言,这些前言通常要向读者提交一个非常恢宏的画面,好像就要把自己研究的某个研究领域的某个部分完整地呈现出来,我们写这些文章时,注定我们通盘考虑,认真设计,斟酌再三,但即使这样,到最后写出来的文章却往往是没有层次感,总感觉到大排档吃饭了少上一个果盘那样不爽。

先来看一个例子:

Journal of Cell Science 118, 1373-1384,2005,文章的题目:Functional INAD complexes are required to mediate degeneration in photoreceptors of the Drosophila rdgA mutant

Introduction

Transmembrane signalling cascades initiated by G-proteincoupled receptors are a widely used mechanism for signalling the detection of many sensory modalities. These cascades end with the activation of plasma-membrane ion channels whose activity alters membrane potential and initiates synaptic transmission of a signal to the central nervous system. Several different families of ion channels have been implicated in this process. Historically, the oldest and best characterized are cyclic-nucleotide-gated channels, whose role in vertebrate visual and olfactory transduction is well established (Matulef and Zagotta, 2003). More recently, members of the TRP family of ion channels have been implicated in the transduction of several sensory modalities in both vertebrate and invertebrate systems. These include light (Drosophila TRPC), pheromones (rodent TRPC2), taste (rodent TRPM), physical stimuli and temperature (Drosophila and mammal TRPV, TRPA and TRPN) (Montell et al., 2002). Currently, a crucial factor limiting our understanding of how TRP channels encode sensory modalities is the lack of information about how these channels are activated. In several cases, only a few transduction components have been identified and the inability to perform in vivo analysis of channel activation has been a major obstacle in revealing how TRP channels are activated.

The Drosophila phototransduction cascade is historically the oldest and to date the best understood model for the analysis of a TRP channel involved in sensory transduction (Hardie and Raghu, 2001). In the fly eye, rhodopsin, a seventransmembrane- span G-protein-coupled receptor, activates phospholipase C??(PLC? (Bloomquist et al., 1988) via Gq (Scott et al., 1995). This initiates a biochemical cascade that ends with the opening of two classes of calcium- and cationselective TRPC channels, TRP and TRPL (Niemeyer et al., 1996). Several key elements of the transduction cascade have been identified including Gq, PLC??and protein-kinase C. Several of these components, along with the TRP channel, are clustered into a macromolecular signalling complex by the multivalent PDZ-domain protein INAD (Tsunoda et al., 1998). The INAD complex is thought to increase the speed and specificity of the light response (Montell, 1998; Tsunoda et al., 1998). However, despite this wealth of detail about the components of the transduction cascade, the mechanism of activation of TRP and TRPL remains poorly understood, and is one of the outstanding problems in both sensory neurobiology and intracellular calcium signalling.

Although the essential role of PLC??in the activation of TRP and TRPL is well established (Bloomquist et al., 1988), the biochemical events initiated by this enzyme that lead to channel activation remain unclear. Inositol-1,4,5-trisphosphate (IP3), the best-understood second messenger generated from phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] hydrolysis by PLC??(Berridge, 1997) was originally postulated to be the second messenger that leads to TRP and TRPL activation (Hardie and Minke, 1993). However, several recent lines of evidence strongly indicate that IP3-induced calcium (Ca2+) release, or indeed a physical interaction between the IP3 receptor (IP3R) and the light-activated channels, is unlikely to underlie the mechanism of TRP and TRPL activation (Raghu et al., 2000a). More recently, lipid second messengers derived from PI(4,5)P2 have been implicated in the activation of TRP and TRPL as well as their vertebrate homologues (Hardie, 2003). Polyunsaturated fatty acids, potential metabolites of diacylglycerol (DAG), the primary lipid generated by PI(4,5)P2 hydrolysis, have been shown to activate TRP and TRPL in situ, as well as in inside-out patches of TRPL channels expressed in S2 cells (Chyb et al., 1999). In addition, both DAG and PI(4,5)P2 have been shown to modulate TRPL channel activity in cell culture models (Estacion et al., 2001). Analysis of TRPC2 activation in the rodent vomeronasal organs shows considerable parallels to our current understanding of the mechanism of Drosophila TRP and TRPL activation (Lucas et al., 2003). However, despite these findings, the physiological relevance of PI(4,5)P2-derived lipids as activators of Drosophila TRP channels in vivo remains to be established and the precise identity of the phospholipid species that is involved is unknown.

Recently, genetic evidence of a role for lipid messengers in the activation of TRPC channels in vivo has been obtained in Drosophila photoreceptors from an analysis of the retinal degeneration A (rdgA) mutant. The rdgA mutant was first isolated because it failed to respond to light in a behavioural assay (Hotta and Benzer, 1970). Analysis of retinal ultrastructure revealed that all alleles show varying degrees of photoreceptor degeneration (Harris and Stark, 1977). Biochemical analysis showed impaired diacylglycerol kinase (DGK) activity (Inoue et al., 1989) and reduced levels of light induced phosphatidic acid (PA) formation (Yoshioka et al., 1983) in head extracts of rdgA mutants. The gene that is defective in rdgA mutants has been cloned and found to encode an eye-enriched isoform of DGK (Masai et al., 1993), the principal enzyme that inactivates DAG by phosphorylation to PA. However, most significantly, under voltage-clamp conditions, several alleles including rdgA1, rdgA3, rdgA6 and rdgAKS60 (Raghu et al., 2000b) (Hardie, personal communication) all show a small constitutively active inward current, which, on the basis of its biophysical characteristics, genetics and pharmacology, has been shown to be composed largely of TRP channels. The retinal degeneration phenotype of rdgA can be rescued by genetically removing TRP channels (i.e. the double mutant rdgA;trp), whose photoreceptors now lack their principal plasma-membrane calcium-influx channels. These results suggested a model in which excessive calcium influx through constitutively active TRP channels results in retinal degeneration in rdgA (Raghu et al., 2000b). The light response of rdgA;trp photoreceptors shows defects in deactivation suggesting that DGK might play a role in terminating the light response (Raghu et al., 2000b) and recent evidence suggests that DGK plays a role in regulating signal amplification during the response to light (Hardie et al., 2002). Despite these recent observations that suggest a direct role for rdgA in phototransduction, previous studies have suggested a distinct mechanism underlying the retinal degeneration phenotype of rdgA. First, unlike most other phototransduction mutants, the retinal degeneration of rdgA is reported to be light independent (Harris and Stark, 1977). Second, norpA mutants, which lack the PLC activity essential for TRP channel activation, were reported not to suppress the retinal degeneration of rdgA (Masai et al., 1993). Third, several studies have suggested that a failure of rhabdomere biogenesis and protein trafficking underlies the rdgA phenotype (Masai et al., 1997; Suzuki et al., 1990).

To address these apparently conflicting results and to understand the mechanism of degeneration in rdgA, we are undertaking a genome-wide forward-genetic screen for mutants that suppress or enhance the retinal-degeneration phenotype of rdgA. Our goal is to identify molecules whose function might help us to understand the basis of the constitutive TRP-channel activity that is associated with the rdgA phenotype. Here, we describe the isolation and characterization of two mutants identified in our screen. We then describe experiments that address the requirement for the light response in the degeneration phenotype of rdgA.

书写嵌套前言是需要技巧的,大家都拍床戏,有的甚至拍成了三级片,不能公开放映,可李安拍的《色戒》同样也是真刀真枪地干,而且还是大牌的梁朝伟在演,可是却能公开放映,因为这是需要真功夫的。其实梁朝伟是不是仅仅在做假动作,由于压力那东西不可能持续那么长的时间倒不是很重要的。人们众口一词,剧情需要,鬼!鬼才相信呢。

取得效果的原因在于李安建立了一套规则:

1.名作

2.名人的书

3.名导演

4.爱国的大背景

5.以抗日的名义做着“不抗日”的事情,前者是给观众看的,后者是汤唯做的。

你说这部片子能不公映吗?因为公映,他能不赚钱吗?

同样,我们嵌套前言也需要建立一套规则,先列明规则吧:

1. 分出段落,同时在不同段落间保持特有的向“问题”聚焦的连接。

2. 设计嵌套循环,每个嵌套都按照背景-焦点-问题进行小循环。

3. 按照对某个研究的认识进行排列,同时对最重要的嵌套按照假设-结果进行文献回溯,并尽量放在前言最突出的位置。

你自己分析一下上面的前言,看看是不是这样一回事。哎呀,如果这样,我们其实也拍了一个成功的三级片。

前文谈了各种前言的写法,现在我们开始说结果Results,Results是文章的基本部分,当然结果需要从你的实验结论中提取和升华,要将那些能够直接回答或最支持前言中提出的问题的结论放上去,而那些无关或关系不大的材料则要忍痛割爱,放在下一篇文章中去展示了。

因此结果这个架构最重要的是告诉别人你的data和有效地进行data的组织,并从这种组织中引出下一个data和下一个组织,以便最后在逻辑上环环相扣,最有说服力地回答你前言中的问题。

告诉别人你的RT-PCR结果,然后是western blot结果,还有免疫荧光等等,所有这些都是要告诉别人这种细胞或组织有某种物质在基因和蛋白水平的表达,而且这种表达具有时空特点。

所以结论涉及到下列问题:

1.DATA的展示

2. DATA的组织

3. 不同层次间实验的转接

我们将就这三个问题进行逐个剖析。

我们先来谈第一个问题,data的展示:

在这个年代,展示变得非常重要,就如李安的《色戒》,为什么这部电影这么红?大陆甚至有所谓的影迷为了看《色戒》的完整版,专门坐飞机到香港去看这部电影?不容讳说,影片中的“蛋蛋”其实是关键因素。但为什么很多人看惯了东西方黑白黄几乎所有花样频出的***,却还热衷于这不三级片呢?

展示的好!梁朝伟的蛋蛋,高难度复杂的回别针,还有大牌的李安,加上张爱铃,所有的因素构造起来让这部说穿了就是黄色的小电影(美国定级为NC-17)却让很多人大呼好,一些影评家甚至说20年将难有电影望其项背,你看,这就叫展示,这种艺术化的展示正是我们构造SCI论文的结果需要的。

DATA的展示同样需要这种艺术,你不能罗列,是什么就说什么,没有人会接收你的论文的。要处理,怎样处理?

1. 数据要转化为一看就懂的,一读就理解的。

2. 要有对照,好的为什么好的,是因为有对照!

3.要有对比,要有不同的,不同的处理造成不同的结果。

4.要有统计,用大家公认的统计方法说明差别。

关于数据处理的问题,其原则就是要用最直观和简洁的展示来说明问题,因此文章中出现不经处理和分析的大量原始资料简直是对你工作的亵渎。文章中的数据只能是“a few”,不能是‘many“,更不能是‘all’,而且一般情况下你只能展示,通常不做注解,如果你不简洁明了,没有傻子会去分析你的数据的意义。因此,为了给读者留下印象,或者说直白点,为了你的文章被接受,你要使用一些处理技巧,通常的处理技巧大家都知道,直观的图和表,用这些图和表让人很容易理解你的意思。

我们知道,数据一般包括原始数据、经过平均化用mean±SD表示或者适当转化用对数或百分数表示等几种类型,这些数据即使讲出来也是枯燥的,不被理解的,结果则是经过设计的,通常的特点就是引进了比较,比如,你高1.8m,我2.6米,这是数据,现在说我比你高0.8米,就是结果,关键在于这个结果是单纯的结果,现在说我们比日本人高0.8m(P<0.05,n=1200),这就有意义了,他的意思说分别拿出1200个随机样本,那么中国人比日本人平均高0.8m,而且有显著意义,这就是有意义的结果。

真**通俗的概念,我还罗嗦什么?好了,现在谈谈结果中最重要的组织。如何把材料有机地组织在一起,特别是形成环环相扣的结论,这是非常关键的技巧。

编辑: zhongguoxing

版权声明

本网站所有注明“来源:丁香园”的文字、图片和音视频资料,版权均属于丁香园所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:丁香园”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。同时转载内容不代表本站立场。

  • App下载